・论 著・ doi:10.3969/j.issn.1671-8348.2022.05.001 网络首发 https://kns.cnki.net/kcms/detail/50.1097.R.20211222.1912.008.html(2021-12-23)

MRI 多模态成像在 UTMD 联合 CA-(Q-D-lip) 精确示踪和治疗胶质瘤中的价值^{*}

郑汉朋¹,赵应征²,周海生¹,吕金纯¹,吴爱琴³,陈 棋³,赵雅萍³,许崇永^{3△} (1.乐清市人民医院放射科,浙江温州 325600;2.温州医科大学药学院,浙江温州 325000; 3.温州医科大学附属第二医院放射科,浙江温州 325027)

「摘要] 目的 探讨磁共振成像(MRI)多模态技术在超声靶向微泡爆破技术(UTMD)联合量子点(QDs) 加载多西紫杉醇抗肿瘤药物「简写为 CA-(Q-D-lip) 〕精准示踪和靶向治疗大鼠 C6 胶质瘤的应用价值。 方法 选择 80 只雄性成年健康 SD 大鼠,分为对照组及 4 个不同治疗组{QDs 溶液+超声爆破治疗组(Q-D+ UTMD 组)、空白脂质体+超声爆破治疗组(Blank lip+UTMD 组)、QDs 脂质体+超声爆破治疗组(Q-D-lip+ UTMD 组)和纤连蛋白靶向肽修饰的 QDs 脂质体+超声爆破治疗组[CA-(Q-D-lip)+UTMD 组],每组 16 只。治疗组从大鼠接种C6胶质瘤细胞后第7天开始定期给药,28 d 内共接受7次给药。每次给药后立即行 UTMD 治疗,各组给药后第7、14、21、28 天进行胶质瘤 MRI 常规、动态增强扫描及多扩散敏感因子(b)值扩散 加权成像及荧光成像。计算增强 MRI 后胶质瘤体积:依据时间-信号强度曲线(TIC)特征,计算早期相对信号 强化率(ARSER);分析不同数学扩散模型的评价效能。荧光成像仪检测胶质瘤 QDs 的分布特点,胶质瘤中靶 向肽脂质体的靶向性。分析各组 C6 胶质瘤在同一及不同时间内体积变化、TIC 信号强度差值及 ARSER 比 较、多b值扩散加权成像中的多参数差异分析。结果 各组 ARSER >60%。CA-(Q-D-lip)+UTMD 组治疗 后体积缩小最明显, ARSER 最小, 效果优于其他4组; CA-(Q-D-lip)+UTMD 组随时间增加, 表观弥散系数 (ADC)、D、Dapp 值整体呈上升趋势,Kapp、D*及f值呈下降趋势;其余4组随时间增加,ADC、D、Dapp 值呈下 降趋势,Kapp、D*及f值呈上升趋势;这些参数综合比较,ADC值相对稳定可靠,诊断效能较高;CA-(Q-Dlip)+UTMD组QDs量分布最多(第7天)。结论 MRI 多模态成像可精确评价CA-(Q-D-lip)+UTMD治疗 胶质瘤的疗效。

[关键词] 量子点脂质体;超声靶向微泡爆破技术;C6 胶质瘤;磁共振成像;荧光成像

[中图法分类号] R445.1; R739.4 [文献标识码] A [文章编号] 1671-8348(2022)05-0721-09

Value of MRI multi-modal imaging in precise tracing and treatment of glioma by UTMD combined with CA-(Q-D-lip)*

ZHENG Hanpeng¹, ZHAO Yingzheng², ZHOU Haisheng¹, LYU Jinchun¹,

WU Aiqin³, CHEN Qi³, ZHAO Yaping³, XU Chongyong³

(1. Department of Radiology, Yueqing People's Hospital, Wenzhou, Zhejiang 325600, China;

2. College of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China;

3. Department of Radiology, the Second Affiliated Hospital of Wenzhou

Medical University, Wenzhou, Zhejiang 325027, China)

[Abstract] Objective To explore the application value of magnetic resonance imaging (MRI) multimodal technique in ultrasound-targeted micro-bubble destruction (UTMD) technique combined with quantum dots (QDs) loading docetaxel antineoplastic drug [CA-(Q-D-lip)] to accurately trace and target the treatment of rat C6 glioma. Methods A total of 80 male adult healthy SD rats were divided into the control group and four different treatment groups {QDs solution+ultrasonic blasting treatment group (Q-D+UTMD group),

^{*} 基金项目:浙江省温州市科技局项目(1902ky166)。 作者简介:郑汉朋(1963一),主任医师,大专,主要从事神经系统影像学研究。

[△] 通信作者,E-mail:1719882385@qq.com。

blank liposome+ultrasonic blasting treatment group (Blank lip+UTMD group), QDs liposome+ultrasonic blasting treatment group (QD-lip + UTMD group) and fibronectin targeting peptide-modified QDs liposomes+ultrasonic blast therapy group [CA-(QD-lip)+UTMD group]}, with 16 rats in each group. Starting from the 7th day after the rats were inoculated with C6 glioma cells, the treatment group received regular 7 doses within 4 weeks (28 days). After each administration, the UTMD treatment was performed immediately. The routine MRI, dynamic enhanced scanning, multi-diffusion sensitive factor (b)-value diffusion-weighted imaging and fluorescence imaging were performed on rat glioma on seven, 14, 21 and 28 days after administration. Glioma volume after enhanced MRI was calculated; the relative signal enhancement ratio in the arterial phase (ARSER) was calculated, based on the characteristics of the time-signal intensity curve (TIC); and the evaluation efficacy of different mathematical diffusion models was analyzed. The fluorescence imager detected the distribution characteristics of glioma QDs, and the targeting properties of targeting peptide liposomes in glioma. The volume change, TIC signal intensity difference, ARSER comparison and the multi-parameter difference of Multi-b value diffusion-weighted imaging of C6 glioma between all the groups at the same and different time were analyzed. **Results** ARSER was performed at >60% in each group. CA-(QD-lip)+UTMD group had the most obvious volume reduction after treatment, ARSER was the smallest, and the effect was better than that of the other four groups. CA-(QD-lip)+UTMD group increased with time; apparent diffusion coefficient (ADC), D and Dapp value showed overall upward trend; and Kapp, D* and f values showed a downward trend. The other four groups increased with time; ADC, D, and Dapp values showed a downward trend, and Kapp, D^{*} and f values showed an upward trend. A comprehensive comparison of these parameters showed that ADC value was relatively stable and reliable with high diagnostic efficacy. CA-(QD-lip)+UTMD group had the most QDs distribution (day 7). Conclusion MRI multimodal imaging can accurately evaluate the efficacy of CA-(Q-D-lip) combined with UTMD in the treatment of glioma.

[Key words] quantum dots lipidosome; ultrasound targeted micro-bubble destruction; C6 glioma; magnetic resonance imaging; fluorescence imaging

胶质瘤占颅内肿瘤的 40%~50%^[1],侵袭性生长 是其生物学特征之一,这使得胶质瘤与正常脑组织边 界不清^[2]。所以,胶质瘤边界的准确识别是保证手术 成功、防止复发的关键因素^[3]。量子点(quantum dots,QDs)作为一种纳米荧光标记探针,荧光信号强, 稳定性好,已用于标记特定细胞和组织^[4-5]。国内外 多个研究团队发现,应用脂质体包载水溶性 QDs 可 提高其物理稳定性,保留 QDs 荧光特性,并极大降低 生物毒性;若再对纳米载体进行靶向修饰,有望用于 肿瘤在体内的示踪^[5-7]。

最新研究发现,L19及其衍生物可以特异性地与 细胞外基质成分中的纤连蛋白结合,实现胶质瘤靶向 示踪和药物递送^[8]。基于已有文献^[8-9]报道,本研究 选用纤连蛋白靶向肽——氨基酸短肽(Cys-Arg-Glu-Lys-Ala,CA)作为靶向配基,将其修饰到药剂辅料聚 乙二醇(PEG)-二硬脂酰磷脂酰乙醇胺(DSPE)上,制 备包载水溶性 QDs 新型脂质体,并加载多西紫杉醇 (docetaxe,DTX)抗肿瘤药物[简写为 CA-(Q-Dlip)],经鼠尾静脉给药后,超声脑部定位,利用超声靶 向微泡爆破技术(ultrasound targeted micro-bubble destruction,UTMD)可逆性开放血脑屏障,递送 QDs 纳米粒突破血脑屏障入脑,实现胶质瘤高效靶向治疗 及特异性示踪,有效地将"QDs 高效示踪技术""肿瘤 靶向纳米粒制剂技术"和"UTMD 开放血脑屏障介导 技术"三者有机结合,充分发挥新材料、新制剂和超声 介导手段等多学科团队(MDT)技术优势,解决胶质瘤 术中边界定位难、转移灶容易遗漏的技术瓶颈,为提 高胶质瘤药物治疗效果和提升手术质量而探索一种 安全有效的新方法。

磁共振成像(MRI)多模态成像已成为肿瘤早期 诊断和疗效监测的重要影像学检查方法之一^[10]。通 过灌注成像(perfusion weighted imaging, PWI)评价 胶质瘤微循环的分布特点,扩散加权成像(diffusion weighted imaging, DWI)反映水分子扩散能力大小; 通过体素内不相干运动(intra-voxel incoherent motion, IVIM)的扩散敏感因子(b)值调整来反映单纯水 分子扩散或微循环灌注,扩散峰度成像(diffusion kurtosis imaging, DKI)来反映水分子扩散的不均质 性和受限程度^[11]。本研究应用 MRI 多模态成像及 QDs 荧光示踪探讨 CA-(Q-D-lip)+UTMD 精确示踪 和靶向治疗胶质瘤的效果及可行性,现将研究结果报 道如下。

材料与方法
 1.1 材料

1.1.1 试剂

10%水合氯醛、水溶性 QDs 购于武汉佳缘量子 点科技发展有限公司;DSPE、纤连蛋白靶向肽修饰 PEG-DSPE、DTX 溶液、胆固醇、二氯甲烷购于上海生 物生命科技有限公司;钆喷替酸葡胺(Gd-DTPA)购 于美国 Berlex Laboratory 公司。

1.1.2 仪器

使用 Malvern Zetasizer Nano ZS900 纳米粒径电 位分析仪,检测新型脂质体 CA-(Q-D-lip)粒径大小及 δ电位。使用荧光分光光度计检测包载后量子点 CA-(Q-D-lip)荧光特征有无变化和 QDs包封率。采用高 效液相色谱仪(HPLC,日立L-2400,配备紫外线检测 器,日本东京)检测 DTX 的包封率及脂质体稳定性。 iCAN 9 傅立叶红外光谱仪(天津市能谱科技有限公 司)证实 CA 是否成功修饰至脂质体上。使用脑立体 定位仪(KOPF900,美国 David KOPF 仪器公司)固定 大鼠头部。使用 UTMD(西门子 Acuson Sequoia 512C 系统)治疗。使用高分辨率老鼠扫描专用线圈 (3.0T,8 通道,内径 7 cm,GE Discovery MRI 750,上 海辰光医疗科技股份有限公司)进行 MRI 扫描。采 用小动物光学成像系统(美国 CRI 公司)扫描采集荧 光图像。

1.1.3 实验动物

选用 SD 雄性大鼠 80 只(上海斯莱克实验动物有限责任公司),体重 220~360 g,分为对照组和 4 个不同治疗组(QDs 溶液+超声爆破治疗组(Q-D+UT-MD 组)、空白脂质体+超声爆破治疗组(Blank lip+UTMD 组)、QDs 脂质体+超声爆破治疗组(Q-D-lip+UTMD 组)和纤连蛋白靶向肽修饰的 QDs 脂质体+超声爆破治疗组[CA-(Q-D-lip)+UTMD 组]},每组 16 只。大鼠全部操作、处置及手术都遵循动物福利和伦理原则,并通过温州医科大学动物保护和应用委员会检查和批准。

1.2 方法

1.2.1 CA-(Q-D-lip)制备

选用纤连蛋白作为靶向位点,将 CA 修饰到药剂 辅料 PEG-DSPE上,运用自主知识产权脂质体制备方 法包载水溶性 QDs,将脂质体膜成分——DSPE、纤连 蛋白靶向肽修饰 PEG-DSPE 及 DTX 溶液与胆固醇 按比例加入二氯甲烷中,37 ℃搅拌溶解备用。将水溶 性 QDs 溶液滴入溶有膜成分的二氯甲烷中,超声分 散 3 min,旋转蒸发除去二氯甲烷。超声分散脂质体 即得到 CA-(Q-D-lip),同法制备不含 CA 或水溶性 QDs 的脂质体。

1.2.2 大鼠 C6 胶质瘤造模

(1)大鼠固定与切口选择:0.3 mL/100 g 体重剂

量的 10%水合氯醛腹腔注射麻醉;在脑立体定位仪上 固定大鼠头部;(2)大鼠钻孔:按照大脑立体定位解剖 图谱,选择大鼠右侧尾状核为注射靶点;(3)大鼠 C6 胶质瘤细胞接种:抽取细胞悬液 10 μL(细胞数约 1× 10⁶ 个)缓慢注入鼠脑尾状核,使用无菌骨蜡封堵钻骨 孔。对照组则以等体积细胞培养液替换 1×10⁶ 个/ 10 μL 的 C6 胶质瘤细胞悬液。

1.2.3 给药方式及检测时间

SD 大鼠接种 C6 胶质瘤细胞后第 7 天开始各组 定期给药,给药方式均采用鼠尾静脉注射,注射剂量 为 1 mL (含 QDs 50 nmol,DTX 剂量为 5 mg/kg);超 声微泡剂量:200 毫克/只(300 µL/kg,1 108~5 108 个微泡/毫升),二者加入溶液中混合使用即可。每次 给药后,立即行 UTMD 治疗,14 MHz,线性阵列传感 器放置在肿瘤细胞植入及对侧大脑半球的头骨上。 除对照组外,超声换能器参数设置如下:脉冲重复频 率 1 Hz,声波时间 60 s,爆破时间 10 ms,声功率 3 W。 治疗组于 7、11、14、18、21、25、28 d 给药,28 d 内共接 受 7 次给药。各组给药后 7、14、21、28 d 进行体内胶 质瘤 MRI(常规、动态增强扫描及多 b 值扩散加权成 像)及荧光成像(本研究 2 例建模失败)。

1.2.4 MRI 常规平扫及动态增强扫描

经腹腔注入 10%水合氯醛(0.3 mL/100 g 体重) 麻醉剂,俯卧位固定于高分辨率大鼠扫描专用线圈, 头先进,背朝上,用小毛毯遮盖大鼠进行保暖,避免 MRI 扫描过程中头部运动伪影。MRI 检查序列:横 断及冠状面 T1WI 及 T2WI, T1WI 动态增强扫描。 检查参数:T1WI 重复时间(repetition time,TR)500 ms,回波时间(echo time,TE)12 ms,矩阵 192×192, 激励次数(number of excitation, NEX)为2次;T2WI TR 4 000 ms, TE 96 ms, 矩阵 224×320, NEX 为 3 次;层厚 2.0 mm,层间距 0.2 mm,视野(field of view,FOV)81 mm×90 mm;动态增强采用 Ax LA-VA-xvDYN 方案, 层厚 2 mm, 120 圈/层块, 翻转角 12°,NEX 为1次,FOV 80 mm×80 mm,矩阵 160× 160,采用4.5号儿科头皮针经鼠尾静脉手动推注钆 喷替酸葡胺,4 s 内完成,注射剂量 0.4 mmol/kg,造 影剂注射完成后即行扫描,总共扫描时间为6 min 2 s.

1.2.5 多b值扩散加权成像

MRI 增强检查前先行 DWI 扫描,采取 OAx eD-WI MB=7 Head 方案,第 2 次扫描定位后,采取自旋 回波-回波平面成像(SE-EPI)序列,针对 SD 大鼠行全 脑扩散加权成像检查。扫描参数:TE minimum,TR 2 000 ms,层厚 3 mm,层间距 0 mm,矩阵 160×192, FOV 80 mm×100 mm;b 值分别采用 0,30,100,200, 400、1 000、1 500 s/mm², NEX 为 6 次, 扫描时间 4 min 16 s, 评价不同数学扩散模型[表观弥散系数 (ADC)单指数模型、IVIM 双指数模型及 DKI 模型] 参数的诊断效果, 初步确定上述模型中最好及最稳定 的扩散模型: (1) ADC 单指数模型: ADC=ln(S₀/S₁)/ (b₁-b₀), b 值取 30、100、200、400 及 1 000 s/mm²; (2) IVIM 双指数模型: S_b = S₀[(1-f)× $e^{(-bD)}$ + f× $e^{[-b(D+D^*)]}$, f 值为灌注分数, D 值为真性扩散系数 (ADC-slow), D* 值为假性扩散系数(ADC-fast), b 值 取 30、100、200、400 及 1 000 s/mm²; (3) DKI 模型: S_i = S₀ × exp^(-bi×Dapp+bi²×Dapp²×Kapp/6), Kapp 为平均峰 度, 无单位; Dapp 值指非高斯分布矫正过 ADC 值; b 值取 30、100、200、400、1 000、1 500 s/mm²。

1.2.6 MRI 数据测量及分析

(1)计算增强 MRI 后肿瘤体积:确定强化胶质瘤 的最大横断面与冠状面,测定最大左右径(W),前后 径(L)和上下径(H),数值带入公式体积=(W×L× $H \times \pi \times 4/3$) × 1/8, 单位为 mm³; (2) 依据时间-信号 强度曲线(TIC)特征,计算出不同组早期相对信号强 化率 (relative signal enhancement ratio in arterial phase, ARSER), ARSER = ($\mathrm{SI}_{\mathrm{post30}} - \mathrm{SI}_{\mathrm{pre}}$)/ $\mathrm{SI}_{\mathrm{pre}}$ × 100%, SI_{post30} 为 ROI 增强 30 s 时信号强度, SI_{pre} 为相 应 ROI 增强前(平扫)信号强度;增强扫描 0~<33 s 定为早期,33~198 s 定为中晚期;胶质瘤强化峰值时 间为注药后 198 s 内, TIC 到达最高强化峰值所需时 间;(3)分析不同数学扩散模型的评价效能:通过 Mitalvtics软件(新加坡),基于 Matlab 及 C 语言对图像 进行后处理,对每只鼠脑的 DWI 图像进行 ROI 手动 选取,选择胶质瘤边缘实质部分、病灶周围正常组织 和对侧正常组织分别测量,获取b值-信号强度参数图 和参数结果,并采用不同数学扩散模型进行图像拟 合。质量控制:DWI 定位线垂直于大鼠脊柱,从大鼠 眼球后缘开始扫描,选最清楚图像进行分析,ROI选 取肿瘤实质部分,面积尽可能大,尽量避开大血管、脉 络从、肿瘤坏死、出血及伪影区域,见图1。

1.2.7 荧光成像

完成 MRI 检查后,采用小动物光学成像系统扫描并采集荧光图像。红色液晶滤光片大小为 500~700 nm。通过 QDs 分布对荧光图像进行分析,观察荧光聚集度、靶向肽脂质体的靶向性,测量荧光面积及肿瘤体积。

1.3 统计学处理

采用 SPSS19.0 软件进行数据分析,符合正态分布的计量资料以 $\overline{x} \pm s$ 表示,比较采用 t 检验,以 P < 0.05 为差异有统计学意义。

2 结 果

2.1 各组大鼠 C6 胶质瘤体积变化情况

对照组、Q-D+UTMD组、Blank lip+UTMD 组、Q-D-lip+UTMD组肿瘤体积随时间延长,不断增 大,CA-(Q-D-lip)+UTMD组肿瘤体积在第14、21天 逐渐增大[(12.41±5.84)mm³ vs.(40.12±21.09) mm³ vs.(62.41±31.21)mm³],第28天肿瘤开始缩 小[(19.46±7.46)mm³],见图2。

造模后第7、14天各组肿瘤体积类似,第21、28 天对照组肿瘤体积增长最明显[(324.21±34.43) mm³ vs.(641.36±63.44)mm³],对照组与各治疗组 肿瘤体积比较,差异有统计学意义(P<0.05),见图3。

A:IVIM 测量;B:DKI 测量。 图 1 多 b 值扩散加权成像 ROI 测量

2.2 各组大鼠 C6 胶质瘤时间-信号强度比较

对照组、Q-D+UTMD组、Blank lip+UTMD组 及 Q-D-lip+UTMD组肿瘤实质部分MRI平扫信号 强度随时间变化逐渐升高;CA-(Q-D-lip)+UTMD 组肿瘤信号强度整体上随时间呈上升趋势,第14、21 天肿瘤信号强度变化不明显,第28天肿瘤信号强度 降低,CA-(Q-D-lip)+UTMD组信号强度低于其他4 组,见图4。不同时间(第14、21、28天)不同组间大鼠 C6胶质瘤TIC比较,各组ARSER-cut off时间(截断 值)在28~33 s,动脉期明显强化,ARSER>60%,中 晚期在较高信号强度基础上持续强化,强化峰值时 间>198 s,曲线以上升趋势为主,见图5。

各组大鼠 C6 胶质瘤不同时间体积变化(MRI-T1WI 横断增强) 图 2

图 3

图 5 各组大鼠 C6 胶质瘤 TIC 比较

2.3 各组大鼠 C6 胶质瘤不同数学模型参数随时间 变化趋势

第 14、21 天 Q-D-lip + UTMD 组及 CA-(Q-D-lip)+UTMD 组 ADC 值逐步升高,与对照组比较差 异有统计学意义(P < 0.05);第 28 天仅 CA-(Q-D-lip)+UTMD 组与对照组比较,差异有统计学意义 (P < 0.05)。对照组及 Blank lip+UTMD 组 D 值随时 时间明显下降,CA-(Q-D-lip)+UTMD 组 D 值随时 间明显上升。对照组、Q-D+UTMD 组、Blank lip+ UTMD 组及 Q-D-lip+UTMD 组 D* 值随时间呈上升 趋势,CA-(Q-D-lip)+UTMD 组随时间呈下降趋势。 对照组f值随时间明显上升,Q-D+UTMD 组、Blank lip+UTMD 组、Q-D-lip+UTMD 组f值随时间缓慢 上升。对照组、Q-D+UTMD 组、Blank lip+UTMD 组及 Q-D-lip+UTMD 组 Dapp 值随时间呈下降趋 势,CA-(Q-D-lip)+UTMD 组随时间呈上升趋势。 对照组、Q-D+UTMD 组、Blank lip+UTMD 组及 Q-D-lip+UTMD 组 Kapp 值随时间呈上升趋势, CA-(Q-D-lip)+UTMD 组随时间呈上升趋势, CA-(Q-D-lip)+UTMD 组随时间呈缓慢下降趋势, 见图 6。

对照组比较。

图 6 各组大鼠 C6 胶质瘤不同数学模型参数随时间变化趋势

2.4 造模后第7天各组C6胶质瘤荧光示踪及靶向 性研究

造模后第7天,荧光监测各组 QDs 在大鼠胶质瘤

中分布,对照组及 Blank lip+UTMD 组无 QDs 累积, Q-D+UTMD 组、Q-D-lip+UTMD 组及 CA-(Q-Dlip)+UTMD 组出现 QDs 累积,且逐渐递增,见图 7。

图 7 造模后第 7 天荧光监测结果

3 讨 论

胶质瘤是中枢神经系统最常见恶性肿瘤,严重损害了脑功能,致残率及复发率均较高^[1,3]。其治疗包括手术、化疗及放疗,术前精准定位是确保胶质瘤手术完整切除的重要因素。本研究利用 UTMD 可逆性开放大脑血脑屏障,靶向递送 CA-(Q-D-lip) 入脑,实现胶质瘤特异性示踪及高效靶向治疗,提高了药物治疗效果,改善了预后,防止了复发。

UTMD 为一种物理学效应,其以微泡作为药物 载体,经外周静脉抵达靶目标并蓄积,采用低频率与 一定强度超声照射,微泡可发生惯性空化效应 (UC)^[12-13]。UC效应可使包裹在微泡内的药物在体 内精准释放,促进药物渗入靶组织,从而加速肿瘤细 胞坏死,且明显降低药物的毒副作用,为肿瘤靶向治 疗提供了一种新策略^[14]。本研究除 CA-(Q-D-lip)+ UTMD 组外,肿瘤体积随时间增加不断增大,Q-D+ UTMD 组及 Q-D-lip+UTMD 组肿瘤第 28 天出现液 化坏死,提示 DTX 发挥了治疗作用;MRI 增强能很好 地显示胶质瘤体积动态变化、形态、血供及内部结构 改变(液化、出血及坏死等),能直观、多角度评估肿瘤 靶向药物治疗效果。本研究 CA-(Q-D-lip)+UTMD 组肿瘤体积在第14、21天增大,第28天开始缩小,表 明 CA-(Q-D-lip)+UTMD 组治疗效果最佳,大鼠 C6 胶质瘤造模后第 21、28 天肿瘤体积以对照组增长最 明显。说明 CA-(Q-D-lip)和 UTMD 组合能充分发挥 最大协同治疗作用,利用 UTMD 可逆性开放血脑屏 障,递送 CA-(Q-D-lip)入脑,高效靶向治疗。

MRI-PWI 是一种功能成像技术,较直观地展示

正常脑组织和胶质瘤组织血流动力学变化,间接地评价肿瘤血管成熟度^[15],可用于评价大鼠 C6 胶质瘤放化疗及抗血管生成药物疗效评价及预后判定等,具有良好的临床应用前景^[16]。本研究对照组、Q-D+UT-MD组、Blank lip+UTMD组及 Q-D-lip+UTMD组 肿瘤实质部分 MRI 平扫信号强度随时间变化逐渐增高,说明肿瘤随着体积增长,细胞数目增多,内部结构更加致密;本研究 CA-(Q-D-lip)+UTMD 组肿瘤信号强度降低,第 21、28 天肿瘤体积缩小,肿瘤峰值信号强度低于对照组、Q-D+UTMD 组、Blank lip+UTMD 组及 Q-D-lip+UTMD 组,也同样说明 CA-(Q-D-lip)+UTMD 组协同治疗效果最明显,而对照组胶质瘤细胞快速繁殖,生长迅速,实质部分信号强度上升。

各组肿瘤动脉期均明显强化,ARSER>60%,中 晚期基本在较高信号强度基础上持续强化;各组AR-SER 比较,对照组、B+lip+UTMD组、Q-D+UTMD 组、Q-D-lip+UTMD组、CA-(Q-D-lip)+UTMD组 逐渐降低,说明肿瘤治疗后血流灌注发生变化,CA-(Q-D-lip)+UTMD组由于lip+UTMD、DTX及CA 三者协同增效作用,肿瘤血流减少,强化幅度降低。

单指数模型 DWI 是目前唯一能够检测在体组织 于生理和病理状态下水分子微观扩散运动的方法,间 接了解细胞密度、功能状态及微观结构改变,并已成 为临床 MRI 检查的常规组成部分^[17]。在生理和病理 改变条件下,病变组织细胞数量或体积发生变化,水 分子扩散受限,ADC 值下降,DWI 多呈高信号。肿瘤 级别越高,细胞越密集,体积越大,细胞外间隙越小, 水分子自由扩散受阻越明显。CA-(Q-D-lip)+UT-MD 组随时间增加,ADC 值较明显上升,上述结果表 明药物有效治疗后,ADC 值增加,靶向治疗效果越明 显,ADC 值上升越多。LEMKE 等^[19]研究结果显示, DWI 能够反映大鼠胶质瘤内部组织结构的微观改变。

单指数模型 DWI 不能全面反映生物体内复杂的 分子运动,而 IVIM 为多 b 值序列,能同时反映水分 子扩散信息和组织微循环灌注,避免了单指数模型中 微循环单纯水分子扩散与灌注相关扩散混淆,数据更 加可信。应用公式: $S_b = S_0 (1-f) \times e^{(-bD)} + f \times e$ $[-b \times (D+D^*)]$,S₀为b值=0 s/mm²的信号强度,S_b为b 取不同值时的信号强度;f值为灌注分数;D值为 ADC-slow, 代表单纯水分子扩散; D^* 值为 ADCfast^[18]。本研究中,各组D值随时间变化趋势与ADC 值变化基本类似,表明 CA-(Q-D-lip)+UTMD 协同 治疗效果好,胶质瘤成分及结构发生改变,水分子扩 散受限缓解。D*值指灌注相关快速扩散系数,体现 胶质瘤微循环血流灌注量。对照组及 Blank lip+ UTMD 组肿瘤在不断增殖过程中,胶质瘤实质部分 微循环血流灌注变丰富,血供增加,以满足肿瘤快速 增长需求。f值代表体素内灌注效应所占总体扩散效 应的容积百分比。本研究对照组随时间增加f值较明 显上升,CA-(Q-D-lip)+UTMD 组整体上随时间呈 下降趋势,与D*值变化趋势类似。IVIM采用多b值 序列,同时反映水分子扩散运动和组织微循环灌注改 变。高 b 值主要体现的是水分子扩散效应,要获得敏 感的微循环灌注信息,建议 b 值<200 s/mm^{2[18-19]}。 IVIM 可用于肿瘤病理分级及临床分期,治疗效果及 预后评估,协助临床制订治疗方案。

受组织内部固有生化特性、不同组织细胞类型等 影响,IVIM 与 DWI 在较高 b 值时,水分子扩散呈非 高斯分布^[20]。DKI利用峰度值来检测非正态分布与 高斯分布水分子扩散位移间的偏离^[11]。DKI 计算公 式: $S_i = S_0 \times \exp^{(-bi \times Dapp + bi^2 \times Dapp^2 \times Kapp/6)}$, Dapp 值指非 高斯分布修正过的 ADC 值, Kapp 指平均峰度(MK), 无单位,范围 0~1。Dapp 值变化趋势反映了肿瘤组 织水分子活体扩散能力,细胞构成及病理学分级。本 组 Dapp 值变化趋势整体上与 ADC 和 D 值变化趋势 类似,CA-(Q-D-lip)+UTMD 组整体上呈上升趋势。 Kapp 为相同梯度方向上多个 b 值的平均值,可视为 衡量组织微观结构复杂性的一种"度",在众多参数中 应用最广泛。CA-(Q-D-lip)+UTMD 组整体上随时 间呈缓慢下降趋势。Kapp 值越大,表示非正态分布 水分子扩散运动受限越明显,ROI内组织结构成分越 复杂,并可量化这一偏离^[11]。

将治疗药物或成像剂以不同方式负载到 QDs

中,扩展 QDs 多功能性,使其具有多模态成像和治疗 功能是目前国内外学者研究的热点和难点^[1,21]。本研 究 CA-(Q-D-lip)+UTMD 组将靶向配基 CA 修饰到 PEG-DSPE上,实现靶向特异性示踪,利用 CA-(Q-Dlip)+UTMD 技术可逆性开放血脑屏障,实现高效示 踪,故该组 QDs 累积量最多,荧光最强。

综上所述,QDs 脂质体荧光成像与 MRI 在分辨 率、成像时间、成像方式、穿透性及生物安全性等方面 有着比较大的差别,二者分别用于不同的科学研究和 临床诊断领域。QDs 脂质体具有高灵敏度、靶向特异 性、生物相容性及快速响应等优点,不仅可实时荧光 示踪肿瘤动态变化,且 QDs 介导的药物可靶向递送, 但在图像分辨率和成像深度等方面存在不足^[22-23]。 MRI 为多参数成像,组织分辨率高,可获得完整的三 维信息、较好的图像质量和解剖细节,但不足之处在 于灵敏度低,若二者能有机地结合起来,充分发挥各 自优势,协同互补,则能获得更全面、更准确的胶质瘤 示踪及疗效信息。

参考文献

- [1] XU H L, MAO K L, HUANG Y P, et al. Glioma-targeted super-para-magnetic iron oxide nano- particles as drug-carrying vehicles for theranostic effects[J]. Nanoscale, 2016, 8(29): 14222-14236.
- [2] 李钦涛,齐平建,董虹廷.恶性胶质瘤患者 VEGF
 及 TGF-β 的表达改变及其对瘤体可完整切除的
 判断价值[J].中华神经医学杂志,2018,17(1):
 68-72.
- [3] 李巍,王雅茹,宋雯,等. 胶质瘤患者凝血指标的 变化及其与胶质瘤恶性程度相关性分析[J]. 中 华医学杂志,2018,98(5):336-339.
- [4] KAIRDOLF B A, SMITH A M, STOKES T H, et al. Semiconductor quantum dots for bioimaging and biodiagnostic applications[J]. Annu Rev Anal Chem (Palo Alto Calif), 2013, 6 (1):143-162.
- [5] 胡珺,杨畅,陈思颖,等.叶酸偶联荧光量子点脂 质体纳米探针的合成[J].贵州医科大学学报, 2017,42(1):45-51.
- [6] XU H L, YANG J J, ZHUGE D L, et al. Glioma-targeted delivery of a theranostic liposome integrated with quantum dots, superparamagnetic iron oxide, and cilengitide for dual-imaging guiding cancer surgery [J]. Adv Healthc

Mater,2018,7(9):e1701130.

- [7] WANG L W, PENG C W, CHEN C, et al. Quantum dots-based tissue and in vivo imaging in breast cancer researches: current status and future perspectives[J]. Breast Cancer Res Treat, 2015, 151 (1):7-17.
- [8] VENTURA E, CORDAZZO C, QUARTO R, et al. C6: a monoclonal antibody specific for a fibro-nectin epitope situated at the interface between the oncofoetal extra-domain B and the repeat III 8 [J]. PLoS One, 2016, 11 (2): 0148103.
- [9] CHARI R V, MILLER M L, WIDDISON W C. Antibody drug conjugates: an emerging concept in cancer therapy[J]. Angew Chem Int Ed Engl,2014,53(15):3796-3827.
- [10] LEMASSON B, VALABLE S, FARION R, et al. In vivo imaging of vessel diameter, size, and density: a comparative study between MRI and histology[J]. Magn Reson Med, 2013, 69(1): 18-26.
- [11] HU S, HUANG Z H, NI H Y, et al. Positive definiteness of diffusion kurtosis imaging[J]. Inverse Probl Imaging, 2013, 6(1):57-75.
- [12] YANG F Y, WONG T T, TENG M C, et al. Focused ultrasound and interleukin-4 receptortargeted liposomal doxorubicin for enhanced targeted drug delivery and antitumor effect in glioblastoma multiforme[J]. J Control Release, 2012,160(3):652-658.
- [13] 张明,赵应征,马卫成,等.FGF1 纳米脂质体结 合超声靶向微泡爆破技术治疗糖尿病心肌病的 实验研究[J].中华心血管病杂志,2017,45(5): 427-433.
- [14] CHEKHONIN V P, BAKLAUSHEV V P, YU SUBALIEVA G M, et al. Targeted delivery of liposomal nanocontainers to the peritumoral zone of glioma by means of monoclonal antibodies against GFAP and the extracellular loop of Cx43[J]. Nanomedicine, 2012, 8(1):63-70.

- [16] GUAN L M,QI X X,XIA B,et al. Early changes measured by CT perfusion imaging in tumor microcirculation following radiosurgery in rat C6 brain gliomas[J]. J Neurosurg, 2011, 114(6):1672-1680.
- [17] HARKINS K D, GALONS J P, DIVIJAK J L, et al. Changes in intracellular water diffusion and energetic metabolism in response to ischemia in perfused C6 rat glioma cells[J]. Magn Reson Med, 2011, 66(3):859-867.
- [18] FEDERAU C, MAEDER P, O'BRIEN K, et al. Quantitative measurement of brain perfusion with intra-voxel incoherent motion MR imagine [J]. Radiology, 2012, 265(3):874-881.
- [19] LEMKE A, STIELTJES B, SCHAD L, et al. Toward an optimal distribution of b values for intravoxel incoherent motion imaging[J]. Magn Reson Imaging, 2011, 29(6): 766-776.
- [20] STEVEN A J,ZHUO J,MELHEM E R. Diffusion kurtosis imaging: an emerging technique for evaluating the microstructural environment of the brain[J]. AJR Am J Roentgenol, 2014, 202(1):26-33.
- [21] MUTHU M S,KULKARNI S A,RAJU A, et al. Theranostic liposomes of TPGS coating for targeted co-delivery of docetaxel and quantum dots[J]. Biomaterials, 2012, 33(12): 3494-3501.
- [22] SHAO L, GAO Y, YAN F. Semiconductor quantum dots for biomedicial applications [J]. Sensors (Basel),2011,11(12):11736-11751.
- [23] LIN C F, WEN C J, ALJUFFALI I A, et al. Quantiosomes as a multimodal nanocarrier for integrating bioimaging and carboplatin delivery [J]. Pharm Res, 2014, 31(10): 2664-2676.

(收稿日期:2021-05-25 修回日期:2021-09-28)