•论 著• doi:10.3969/j.issn.1671-8348.2023.21.001 网络首发 https://link.cnki.net/urlid/50.1097.R.20231012.1004.004(2023-10-13)

内质网应激上调导致机械通气相关性膈肌功能障碍研究

张菊梅,吴松林,关发升,涂 锐,李学欣,刘 力[△] (西南医科大学附属医院麻醉科,四川泸州 646000)

[摘要] 目的 研究内质网应激(ERS)在大鼠机械通气相关性膈肌功能障碍(VIDD)中是否上调,以及 ERS 与膈肌功能障碍的关系。方法 将 30 只无特殊病原体(SPF)级雄性 SD 大鼠按随机数字表法分为自主呼 吸对照组(Con 组)、机械通气 6 h 组(MV6 h 组)、机械通气 12 h 组(MV12 h 组)、机械通气 18 h 组(MV18 h 组)、机械通气24h组(MV24h组),每组6只。达到建模时间后采用RM6240生物信息采集系统测量膈肌功 能学相关指标,主要包括复合肌肉动作电位(CMAP)、膈肌疲劳指数、膈肌频率-收缩曲线;苏木素-伊红(HE)染 色观察膈肌纤维形态,测量膈肌纤维横截面积;实时荧光定量逆转录 PCR(RT-qPCR)法和 Western blot 检测 ERS 标志物 C/EBP 同源蛋白(CHOP)、葡萄糖调节蛋白 78(GRP78)、葡萄糖调节蛋白 94(GRP94),以及膈肌 萎缩蛋白肌肉特异性环指蛋白-1(MuRF-1)和肌肉萎缩 F 盒蛋白(Atrogin-1)的 mRNA 及蛋白表达水平。 与 Con 组比较,各机械通气组大鼠膈肌 CMAP 幅值和疲劳指数均明显减小(P < 0.05), MV12 h 组、 结果 MV18 h组、MV24 h组大鼠膈肌 CMAP 时程均明显延长(P<0.05),同一刺激频率下 MV18 h组和 MV24 h 组大鼠膈肌收缩力明显减小(P < 0.05),且随着机械通气时间的延长,膈肌 CMAP 幅值、疲劳指数及收缩力逐 浙下降,CMAP时程逐渐延长,且在 MV24 h 组最为明显。HE 染色结果显示,随着机械通气时间延长膈肌纤 维萎缩程度加重,肌束内肌纤维排列紊乱,体积减小,形态不规则,细胞间隔略有增宽;与 Con 组相比,各机械通 气组大鼠膈肌纤维横截面积均明显减小(P < 0.05)。随着机械通气时间延长,大鼠膈肌萎缩指标 MuRF-1 和 Atrogin-1,以及 ERS 相关指标 CHOP、GRP78、GRP94 的 mRNA 和蛋白表达水平都逐渐升高。结论 在机械 通气大鼠膈肌中,随着通气时间延长,ERS上调,膈肌功能障碍程度加重,ERS是 VIDD 的致病因素之一。

[关键词] 机械通气;机械通气相关性膈肌功能障碍;内质网应激;上调 [中图法分类号] R459.7 [文献标识码] A [文章编号] 1671-8348(2023)21-3201-07

Study on mechanical ventilation-induced diaphragmatic dysfunction caused by endoplasmic reticulum stress upregulation^{*}

ZHANG Jumei, WU Songlin, GUAN Fasheng, TU Rui, LI Xuexin, LIU Li[△] (Department of Anesthesiology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China)

[Abstract] Objective To investigate whether endoplasmic reticulum stress (ERS) was upregulated in mechanical ventilation-induced diaphragmatic dysfunction (VIDD) rat and the relationship between ERS and diaphragmatic dysfunction. Methods A total of 30 male SD rats of special pathogen free (SPF) grade were divided into the autonomous breathing control group (Con group), mechanical ventilation 6 h group (MV6 h group), mechanical ventilation 12 h group (MV12 h group), mechanical ventilation 18 h group (MV18 h group) and the mechanical ventilation 24 h group (MV24 h group) according to the random number table method, six cases in each group. After reaching the modelling time, the RM6240 bioinformatics acquisition system was used to measure the diaphragm functionalism-related indexes, including the compound muscle action potential (CMAP), diaphragm fatigue index and diaphragm frequency-contraction curve. The hematoxy-lin-eosin (HE) staining was used to observe the morphology of diaphragmatic fibers, and the cross-sectional area of diaphragmatic fibers was measured. The real-time fluorescence quantitative PCR (RT-qPCR) and Western blot were used to detect the mRNA and protein expression levels of ERS markers, including C/EBP

^{*} 基金项目:国家自然科学基金项目(81772128)。 作者简介:张菊梅(1997一),在读硕士研究生,主要从事机械通气相关膈肌和肺损伤

研究。 [△] 通信作者,E-mail:niuniudoctor@hotmail.com。

homologous protein (CHOP), glucose-regulated protein 78 (GRP78), glucose-regulated protein 94 (GRP94), and diaphragm atrophy proteins, including muscle-specific ring-finger protein-1 (MuRF-1) and muscle atrophy F-box protein (Atrogin-1). Results Compared with the Con group, the diaphragm CMAP amplitude and fatigue index of rats in each mechanical ventilation group were significantly reduced ($P \leq 0.05$), the diaphragm CMAP duration of the rats in the MV12 h group, MV18 h group and MV24 h group were all significantly prolonged (P < 0.05), and under the same stimulation frequency, the diaphragm muscle contractility of the rats in the MV18 h group and MV24 h group was significantly reduced ($P \le 0.05$), moreover with the prolongation of mechanical ventilation time, the diaphragm CMAP amplitude, fatigue index and diaphragm muscle contractility were gradually decreased, and the CMAP duration was gradually prolonged, which in the MV24 h group was most obvious. The HE staining results showed that with the prolongation of mechanical ventilation time, the degree of diaphragm muscle fiber atrophy became aggravation, and the myofibers in the muscle bundles were disarranged, with the volume decrease and morphology irregularity, and a slight increase in the interstitial space between cells; compared with the Con group, the cross-sectional area of diaphragmatic fibers of the rats in each mechanical ventilation group was significantly decreased ($P \leq 0.05$). With the prolongation of mechanical ventilation, the mRNA and protein expression levels of rat diaphragm atrophy indexes MuRF-1 and Atrogin-1, as well as ERS-related indexes CHOP, GRP78, and GRP94 were gradually increased (P < 0.05). **Conclusion** In the diaphragm of mechanically ventilated rat, with the prolongation of ventilation time, ERS is up-regulated, and the degree of diaphragm dysfunction is aggravated. ERS might be one of the causative factors of VIDD.

[Key words] mechanical ventilation; ventilation-induced diaphragmatic dysfunction; endoplasmic reticulum stress; upregulation

机械通气(mechanical ventilation,MV)是一种挽 救生命的干预措施,全球每年有超过1500万患者在 外科手术和危重疾病中使用机械通气来提供充足的 肺通气^[1-2]。然而,机械通气是一把"双刃剑",长期的 机械通气会导致膈肌纤维萎缩和收缩力下降,从而引 起明显的膈肌功能障碍,称为机械通气相关性膈肌功 能障碍(ventilation-induced diaphragmatic dysfunction,VIDD)。VIDD不仅对患者生存率和预后有明 显的不良影响,也是临床上导致脱机困难的主要原 因,会产生较大的医疗负担。超过50%的机械通气患 者在气管插管24h之内迅速出现VIDD,其发生率与 通气时间延长、撤机困难、再插管率存在明显相关 性^[3-5]。目前,临床尚缺乏预防和治疗 VIDD 的相应 措施,因此对 VIDD 机制的详细了解对临床防治膈肌 功能障碍显得尤其重要。

内质网应激(endoplasmic reticulum stress,ERS) 是指细胞受到内外因素(氧化应激、钙离子紊乱、缺 氧、感染、营养物质缺乏等)的刺激时,内质网形态、功 能的平衡状态受到破坏后发生分子生化的改变,蛋白 质加工运输受阻,内质网内累积大量未折叠或错误折 叠的蛋白质^[6-7]。研究报道 ERS 在很多肌肉疾病中存 在,其中 ERS 在脓毒症相关膈肌功能障碍中发挥了 重要作用,脓毒症相关膈肌功能障碍和 VIDD 之间有 许多共同致病机制,包括氧化应激、蛋白水解系统激 活、线粒体功能障碍、细胞因子的大量激活等^[8-11]。但 ERS 在 VIDD 是否上调,以及随通气时间延长膈肌功 能障碍和 ERS 之间的关系尚缺乏报道。因此,本研究建立了大鼠不同通气时长的 VIDD 模型,探索 ERS 是否在大鼠 VIDD 中上调,以及随着通气时间延长 ERS 和膈肌功能障碍的关系。

1 材料与方法

1.1 实验动物

选择 9~11 周龄无特殊病原体(SPF)级雄性 SD 大鼠 30 只,平均体重(270±30)g,购自北京华阜康生 物科技股份有限公司,动物生产许可证号:SCXK(京) 2019-0008。大鼠饲养于无菌层流鼠笼内,温度(25± 2)℃,相对湿度(50±5)%,白昼交替,大鼠可以自由 进食水。动物实验遵循《实验动物管理与使用指南》, 动物实验经西南医科大学动物实验中心伦理委员会 批准[许可证号:SYXK(川)2018-065]。将 30 只大鼠 按随机数字表法分为 5 组,分别为自主呼吸对照组 (Con 组)、机械通气 6 h 组(MV6 h 组)、机械通气 12 h 组(MV12 h 组)、机械通气 18 h 组(MV18 h 组)、机械通气 24 h 组(MV24 h 组),每组 6 只。

1.2 方法

1.2.1 大鼠机械通气模型的建立

按照 SMUDER 等^[12]的方法建立大鼠机械通气模型。具体步骤如下:腹腔注射 60 mg/kg 的戊巴比妥钠进行基础麻醉。麻醉成功后,将大鼠置于温控加热毯上并固定。然后准备颈部皮肤(备皮、消毒),无菌操作解剖游离气管;行气管切开插管,接容量控制模式的小动物呼吸机(深圳市瑞沃德生命科技有限公司)。潮气量

(VT)设定为8 mL/kg 体重,呼气末正压(PEEP)设定 为0 cmH₂O,呼吸频率(RR)设定为70~75次/min。 尾静脉行 24GY 型留置针(肝素预充)置管,以2 mL•kg⁻¹•h⁻¹的生理盐水和10 mg•kg⁻¹•h⁻¹的 戊巴比妥钠持续泵入。在实验期间,通过使用加热毯将 体温维持在37℃;实验过程中,定时进行护理:翻身、 按摩膀胱、吸痰等。

1.2.2 功能学检测指标及方法

(1)复合肌肉动作电位(CMAP)检测:使用 RM6240 生物信息采集系统记录膈肌 CMAP。将第 一针作为接地电极插入大鼠尾巴近端皮下,下一针刺 入对侧腹部作为参考电极,电极片贴于同侧肋骨下缘 作为记录电极,最后两根针作为刺激电极,垂直插入 锁骨同侧上方,距气管 0.5 cm 处。电极插入深度为 1.0 cm,两针之间的距离为0.5 cm。所述近心端连接 有红色刺激连接器,所述远心端连接有黑色刺激连接 器,刺激方式采用单刺激,目为正电压刺激。刺激强 度为12 V,波宽为1 ms,延迟为1 ms。刺激之间有 30 s 的间隔,连续重复3 次刺激以获得平均响应。 (2)疲劳指数:使用脉冲方波(强度 15 V,波宽 0.5 ms,延时 20 ms)对肌肉进行 50 Hz 连续刺激 2 min, 以刺激 2 min 后的力比开始刺激的力,用该比值描述 膈肌的疲劳指数。(3)频率-收缩曲线测量:将约 3 mm 宽、1 cm 长的肋膈肌条置于 Krebs-Hensleit 溶 液中,用 95% O2、5% CO2 气体平衡,并保持在 37 ℃ 和 pH 7.4。大鼠四肢肌肉用弹簧夹夹紧,并连接到 电磁力传感器上,使用最大刺激电压(15 V)确定最佳 收缩长度(Lo)。然后,以10、20、30、50、60、80、100、 120 Hz 连续刺激肌肉 600 ms,每个刺激训练间隔 1 min 以确定频率收缩曲线关系,收缩力以生理横截面 积归一化计算。

1.2.3 膈肌组织病理学观察及膈肌纤维横截面积测定

膈肌组织用 4%多聚甲醛固定 24 h,经全自动脱 水机梯度乙醇脱水,包埋、切片后进行染色。染色主 要步骤:先将切片脱蜡至水,苏木素染色后使用盐酸 乙醇分化,温水反蓝后置于 85%的乙醇中 5 min,用伊 红染色,再次经梯度乙醇脱水后透明封固。光镜下观 察膈肌组织的病理学改变,采用图像分析软件 Motic Images Advanced 测定膈肌纤维横截面积。

1.2.4 膈肌组织中 ERS 标志物和膈肌萎缩指标基因检测

采用实时荧光定量逆转录 PCR(RT-qPCR)检测 膈肌组织中 ERS标志物[C/EBP 同源蛋白(CHOP)、 葡萄糖调节蛋白 78(GRP78)、葡萄糖调节蛋白 94 (GRP94)]和膈肌萎缩指标[肌肉特异性环指蛋白-1 (MuRF-1)、肌肉萎缩 F 盒蛋白(Atrogin-1)]mRNA 的表达。取适量大鼠膈肌组织,提取组织总 RNA,逆 转录成 cDNA。按照试剂盒说明书进行实验,配制 PCR 反应液,总体系为 25 μ L,PCR 反应条件为 95 ℃ 30 s;95 ℃ 5 s,60 ℃ 30 s,共 40 个循环。引物序列见 表 1。

1.2.5 膈肌组织中 ERS 标志物和膈肌萎缩指标蛋 白检测

采用 Western blot 检测 ERS 标志物(CHOP、 GRP78和GRP94)和膈肌萎缩指标(MuRF-1和Atrogin-1)水平。取大鼠膈肌组织,常规提取蛋白,测定 蛋白质含量、调整蛋白质浓度后,上样、十二烷基硫酸 钠-聚丙烯酸胺凝胶电泳(SDS-PAGE)、转膜、封闭,加 入稀释后的CHOP(1:1000)、GRP78(1:1000)、 GRP94(1:1000)、MuRF-1(1:1000)、Atrogin-1 (1:1000)一抗4℃过夜。TBST洗涤,加入辣根过 氧化物酶(HRP)标记的二抗(1:5000),室温孵育60 min。滴加电化学发光(ECL)试剂,于暗室中曝光、显 影。使用 Image J 软件分析,以 3-磷酸甘油醛脱氢酶 (GAPDH)作为内参,以目的条带灰度值与 GAPDH 条带灰度值的比值作为目的蛋白相对表达水平。

表 1 膈肌萎缩指标及 ERS 标志物基因引物序列(5'-3')

引物	方向	引物序列
MuRF-1	上游	CGGACGGAAATGCTATGGAGAACC
	下游	GGATTGGCAGCCTGGAAGATGTC
Atrogin-1	上游	TGGATGAGAAAAGCGGCACCTTC
	下游	TCTCTTCTTGGCTGCAACATCGTAG
СНОР	上游	CGCATGAAGGAGAAGGAGCA
	下游	TGTGGTCTCTACCTCCCTGG
GRP94	上游	CCTGCTGACCTTCGGGTTTGTG
	下游	CAACCTTCATCGTCTGTCCGTGAG
GRP78	上游	CTGACAACGACAAGACCCCA
	下游	CTCCGATTGGTGAACTCGCT

1.3 统计学处理

使用 SPSS17.0 统计软件分析数据,采用 Graph Pad Prism9.0 软件分析及制作图形。计量资料符合 正态分布以 $\overline{x} \pm s$ 表示,多组比较采用单因素方差分 析(One-Way ANOVA),组间两两比较采用 LSD-t 检 验。以 P < 0.05 为差异有统计学意义。

2 结 果

2.1 膈肌功能学指标

2.1.1 各组大鼠的 CMAP 比较

各组 CMAP 幅值分别为 Con 组(11.43± 1.81)mV、MV6 h组(8.45±0.86)mV、MV12 h组 (6.92±0.49)mV、MV18 h组(4.24±0.70)mV、 MV24 h组(2.41±0.77)mV;各机械通气组与 Con 组相比,差异均有统计学意义(P < 0.05),且随着通气 时间延长,CMAP幅值逐渐减小,见图1A。各组 CMAP时程分别为Con组(3.27 ± 0.60)ms、MV6h 组(3.56 ± 0.56)ms、MV12h组(4.68 ± 0.48)ms、 MV18h组(5.12 ± 0.72)ms、MV24h组(6.35 ± 0.83)ms;MV12h组、MV18h组、MV24h组与Con 组相比,差异均有统计学意义(P < 0.05),见图1B。 CMAP的代表图,见图1C。

2.1.2 大鼠膈肌的疲劳指数比较

各组的疲劳指数分别为 Con 组(38.68 ± 1.53)%、MV6h组(32.23 ± 1.36)%、MV12h组(25.84 ± 1.25)%、MV18h组(22.31 ± 1.21)%、MV24h组(20.47 ± 0.88)%;各机械通气组与 Con 组相比,差异均有统计学意义(P < 0.05),且随着通气时间的延长膈肌疲劳指数越来越小,见图 2A。疲劳指数的代表图,见图 2B。

A:各组大鼠 CMAP 幅值比较柱状图;B:各组大鼠 CMAP 时程比较柱状图;C:CMAP 的代表图;①:Con 组;②:MV6 h组;③:MV12 h组;④: MV18 h组;⑤:MV24 h组;^a:P<0.05,与 Con 组比较;^b:P<0.05,与 MV6 h组比较;^c:P<0.05,与 MV12 h组比较。

A:各组大鼠疲劳指数比较柱状图;B:疲劳指数的代表图;①:Con 组;②:MV6 h 组;③:MV12 h 组;④:MV18 h 组;⑤:MV24 h 组;^a:P<0.05,与 Con 组比较;^b:P<0.05,与 MV6 h 组比较;^c:P<0.05,与 MV12 h 组比较。

图 2 各组大鼠的疲劳指数比较

2.1.3 大鼠膈肌频率-收缩曲线比较

总体上随着刺激频率增加,各组大鼠单位平方厘 米的膈肌收缩力增加。在同一刺激频率下,与 Con 组 相比,MV18 h 组和 MV24 h 组的收缩力明显减小 (P<0.05),见图 3。

2.2 膈肌 HE 染色

光镜下可见, Con 组大鼠膈肌组织肌束结构清 晰、边界分明,肌纤维排列较为紧密,细胞核呈扁圆形 或椭圆形,位于细胞周缘,细胞质染色较为均匀,未见 明显肌纤维萎缩;机械通气组,随着通气时间的延长, 肌束结构不清晰,细胞间隔略有增宽,肌纤维小簇性 萎缩,萎缩程度轻重不一,MV24 h组萎缩最为严重, 见图 4。各组的膈肌纤维横截面积分别为 Con 组 (6 161.34 \pm 345.32) μ m²、MV6 h 组 (4 684.45 \pm 329.10) μ m²、MV12 h 组 (3 404.56 \pm 412.28) μ m²、 MV18 h 组 (2 492. 54 ± 245. 72) μ m²、MV24 h 组 (2 147. 00±189. 12) μ m²,与 Con 组相比,各机械通气 组膈肌纤维横截面积均明显降低(P < 0.05),且随着 通气时间延长,膈肌萎缩加重,横截面积减小,见图 5。

图 4 各组大鼠膈肌 HE 染色

①: Con 组; ②: MV6 h 组; ③: MV12 h 组; ④: MV18 h 组; ⑤: MV24 h 组; ^a: P<0.05, 与 Con 组比较; ^b: P<0.05, 与 MV6 h 组比较; ^c: P<0.05, 与 MV12 h 组比较。

图 5 各组大鼠膈肌纤维横截面积比较柱状图

2.3 膈肌萎缩蛋白 MuRF-1、Atrogin-1 mRNA 及蛋 白表达水平

与 Con 组相比, MV12 h 组、MV18 h 组、MV24 h 组大鼠膈肌 MuRF-1 mRNA 相对表达水平均明显升高(P < 0.05), 且随着通气时间延长, MuRF-1 mRNA 相对表达水平逐渐升高, 见图 6A。与 Con 组相比, 各 机械通气组大鼠膈肌 Atrogin-1 mRNA 相对表达水 平均明显升高(P < 0.05), 且 MV24 h 组最高, 见图 6B。与 Con 组相比, 各 机 械 通 气 组 大 鼠 膈 肌 MuRF-1、Atrogin-1 相对表达水平均明显升高(P < 0.05), 且随着机械通气时间延长, MuRF-1、Atrogin-1 相对表达水平逐渐升高, 见图 6C~E。

A:各组大鼠膈肌 MuRF-1 mRNA 相对表达水平比较柱状图;B:各组大鼠膈肌 Atrogin-1 mRNA 相对表达水平比较柱状图;C:各组大鼠膈肌 MuRF-1 和对表达水平比较柱状图;D:各组大鼠膈肌 Atrogin-1 相对表达水平比较柱状图;E 各组大鼠膈肌 MuRF-1 和 Atrogin-1 电泳图;①:Con 组;②:MV6 h组;③:MV12 h组;④:MV18 h组;⑤:MV24 h组;^a:P < 0.05,与 Con 组比较;^b:P < 0.05,与 MV6 h组比较;^c:P < 0.05,与 MV12 h组比较;^d:P < 0.05,与 MV18 h组比较。

图 6 膈肌萎缩蛋白 MuRF-1、Atrogin-1 mRNA 及蛋白表达水平

2.4 膈肌 ERS 标志物 CHOP、GRP78、GRP94 mR-NA 及蛋白表达水平

与 Con 组相比,各机械通气组大鼠膈肌 CHOP、 GRP78、GRP94 mRNA 相对表达水平均明显升高 (P<0.05),且总体随着通气时间延长,各 ERS 标志 物 mRNA 相对表达水平逐渐升高,见图 7A~C。与 Con 组相比,MV12 h组、MV18 h组、MV24 h组大鼠 膈肌 CHOP、GRP78、GRP94 相对表达水平均明显升 高(P<0.05),且随着通气时间延长,各 ERS 标志物 相对表达水平升高,MV24 h组最高,见图 7D~G。

A:各组大鼠膈肌 CHOP mRNA 相对表达水平比较柱状图;B:各组大鼠膈肌 GRP78 mRNA 相对表达水平比较柱状图;C:各组大鼠膈肌 GRP94 mRNA 相对表达水平比较柱状图;D:各组大鼠膈肌 CHOP、GRP78、GRP94 电泳图;E:各组大鼠膈肌 CHOP 相对表达水平比较柱状图;F: 各组大鼠膈肌 GRP78 相对表达水平比较柱状图;G:各组大鼠膈肌 GRP94 相对表达水平比较柱状图;①:Con 组;②:MV6 h组;③:MV12 h组; ④:MV18 h组;⑤:MV24 h组;^a:P < 0.05,与 Con 组比较;^b:P < 0.05,与 MV6 h组比较;^c:P < 0.05,与 MV12 h组比较;^d:P < 0.05,与 MV18 h 组比较。

图 7 ERS 标志物 CHOP、GRP78、GRP94 mRNA 和蛋白表达水平

3 讨 论

膈肌作为人体最主要的呼吸肌,正常呼吸过程中 有75%~80%的呼吸功是靠膈肌完成,长时间的机械 通气,膈肌处于废用状态,会导致膈肌萎缩和收缩力 下降,称为 VIDD^[13-14]。当细胞存在缺氧、氧化应激、 感染等情况,内质网形态、功能受到破坏,导致蛋白质 加工运输受阻,表现为未折叠或错误折叠的蛋白质在 内质网上累积,从而激活 ERS 感受器,触发下游凋亡 通路^[15-16]。本研究表明在机械通气的膈肌中会激活 ERS,且随着通气时间延长,ERS 程度加重,膈肌功能 障碍加重。

在本研究中,与 Con 组相比,机械通气组随着通 气时间延长,膈肌肌力逐渐减低,膈肌的抗疲劳性下 降,CMAP 的幅值减小,时程延长。膈肌功能障碍的 程度随着机械通气时间的延长而逐渐加重,与临床上 的机械通气患者类似,越长时间使用呼吸机的患者越 难撤机,自主呼吸功能恢复也越缓慢^[17]。随着通气时 间延长,大鼠膈肌肌束结构不清晰,细胞间隔略有增 宽,肌纤维小簇性萎缩,萎缩程度轻重不一,在 MV24 h组膈肌萎缩最为严重,膈肌纤维横截面积最 小;膈肌萎缩蛋白 MuRF-1 和 Atrogin-1 的表达也随着机械通气时间的延长逐渐升高。在机械通气的膈肌中,蛋白质分解加速,合成减少,随着通气时间延长,萎缩也越明显,包括膈肌纤维横截面积的减小和萎缩蛋白 MuRF-1 和 Atrogin-1 表达的增多。

ERS标志物 CHOP、GRP78、GRP94 在机械通气 大鼠膈肌中的表达也随通气时间延长而升高。越来 越多的证据表明,ERS 在肌肉功能障碍的发病机制中 起作用,内质网作为细胞中蛋白质的加工厂和钙离子 的储存器,在肌肉收缩活动中有必不可少的作 用^[18-19]。在 VIDD中,氧化应激、钙离子紊乱、线粒体 功能障碍等均可激活 ERS,从而引起 ERS 相关蛋白 表达增加。内质网上有 3 个跨膜传感器:蛋白激酶 r 样内质网激酶(PERK)、肌醇-需要蛋白 1(IRE1)和激 活转录因子 6(ATF6),生理情况下与 GRP78 结合处 于失活状态,当发生 ERS 时,GRP78 与传感器解离, 传感器被激活,启动未折叠蛋白反应,缓解内质网的 压力^[20-21]。未折叠蛋白的积累过程中,内质网伴侣蛋 白,包括 GRP78 和 GRP94 上调,GRP78 和 GRP94 结 合到错误折叠的多肽链上,以防止形成聚集物,并协 助其正确折叠^[22-23]。在发生 ERS,内质网功能严重受 损时,细胞会通过上调 CHOP 引发凋亡信号,CHOP 在 ERS 介导的凋亡中起着至关重要的作用,CHOP 作为转录因子,能够调节多种抗凋亡和促凋亡基因的 表达,如 BCL-2 家族蛋白,也可直接或间接影响 caspase 家族的活性^[24-25]。随着通气时间的延长,上 调的 ERS 可能通过介导细胞凋亡,影响钙离子稳态 等加速膈肌功能障碍。

综上所述,长时间机械通气会导致膈肌功能障碍,膈肌纤维萎缩,在机械通气大鼠的膈肌中激活 ERS,而上调的 ERS 可进一步引起膈肌功能障碍,抑 制 ERS 可能是未来防治 VIDD 的一个重要靶点。

参考文献

- HYATT H W, OZDEMIR M, YOSHIHARA T, et al. Calpains play an essential role in mechanical ventilation-induced diaphragmatic weakness and mitochondrial dysfunction [J]. Redox Biol, 2021, 38(6):101802.
- [2] VASSILAKOPOULOS T. Ventilator-induced diaphragm dysfunction: the clinical relevance of animal models[J]. Intensive Care Med, 2008, 34 (1):7-16.
- [3] GOLIGHER E C, DRES M, FAN E, et al. Mechanical ventilation-induced diaphragm atrophy strongly impacts clinical outcomes [J]. Am J Respir Crit Care Med, 2018, 197(2):204-213.
- [4] HUANG H Y, HUANG C Y, LI L F. Prolonged mechanical ventilation: outcomes and management[J]. J Clin Med, 2022, 11 (9): 2451.
- [5] LIU Y Y,LI L F. Ventilator-induced diaphragm dysfunction in critical illness[J]. Exp Biol Med (Maywood),2018,243(17/18):1329-1337.
- [6] OAKES S A, PAPA F R. The role of endoplasmic reticulum stress in human pathology[J]. Annu Rev Pathol, 2015, 10:173-194.
- [7] MARCINIAK S J, CHAMBERS J E, RON D. Pharmacological targeting of endoplasmic reticulum stress in disease[J]. Nat Rev Drug Discov,2022,21(2):115-140.
- [8] JIAO G, HAO L, WANG M, et al. Upregulation of endoplasmic reticulum stress is associated with diaphragm contractile dysfunction in a rat model of sepsis[J]. Mol Med Rep, 2017, 15(1):366-374.
- [9] MORTON A B, SMUDER A J, WIGGS M P, et

al. Increased SOD2 in the diaphragm contributes to exercise-induced protection against ventilator-induced diaphragm dysfunction [J]. Redox Biol, 2019, 20:402-413.

- [10] MOROZ N, MAES K, LEDUC-GAUDET J P, et al. Oxidants regulated diaphragm proteolysis during mechanical ventilation in rats[J]. Anesthesiology, 2019, 131(3):605-618.
- [11] DRIDI H, YEHYA M, BARSOTTI R, et al. Mitochondrial oxidative stress induces leaky ryanodine receptor during mechanical ventilation[J]. Free Radic Biol Med, 2020, 146:383-391.
- [12] SMUDER A J, SOLLANEK K J, NELSON W B, et al. Crosstalk between autophagy and oxidative stress regulates proteolysis in the diaphragm during mechanical ventilation[J]. Free Radic Biol Med, 2018, 115:179-190.
- [13] LEVINE S, NGUYEN T, TAYLOR N, et al. Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans[J]. N Engl J Med,2008,358(13):1327-1335.
- [14] PICARD M, AZUELOS I, JUNG B, et al. Mechanical ventilation triggers abnormal mitochondrial dynamics and morphology in the diaphragm[J]. J Appl Physiol, 2015, 118(9):1161-1171.
- [15] 张雨欣,周小杰,于浩然,等.内质网应激与氧化 应激[J].农业生物技术学报,2022,30(10): 2009-2024.
- [16] BURMAN A, TANJORE H, BLACKWELL T S. Endoplasmic reticulum stress in pulmonary fibrosis[J]. Matrix Biol, 2018, 68/69:355-365.
- [17] HORN A G, KUNKEL O N, BAUMFALK D R, et al. Prolonged mechanical ventilation increases diaphragm arteriole circumferential stretch without changes in stress/stretch: implications for the pathogenesis of ventilator-induced diaphragm dysfunction[J]. Microcirculation, 2021, 28(8):e12727.
- [18] GALLOT Y S, BOHNERT K R. Confounding roles of ER stress and the unfolded protein response in skeletal muscle atrophy[J]. Int J Mol Sci,2021,22(5):2567.
- [19] BOHNERT K R, MCMILLAN J D, KUMAR A.
 Emerging roles of ER stress and unfolded protein response pathways in skeletal muscle health and disease[J]. J Cell Physiol, 2018, 233 (1):67-78. (下转第 3213 页)